Section 10.1

Calculus of Parametric

 Functions

Derivative at a point - parametrically: a parametric curve $x=x(t), y=y(t)$ has a derivative at t_{0} if $x(t)$ and $y(t)$ have a derivative at t_{0}.
The curve is differentiable if it is differentiable at all values of t.

The curve is smooth if $x^{\prime}(t)$ and $y^{\prime}(t)$ are continuous and not simultaneously zero.

The formula for finding the slope of a parametric curve is:

$$
\frac{d y}{d x}=\frac{d / d t}{d x / d t}(y)=\frac{\frac{d}{d t}(y)}{\frac{d x}{d t}}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \begin{aligned}
& \text { This makes } \\
& \text { sense if we think } \\
& \text { about cancelling } \\
& d t .
\end{aligned} \begin{aligned}
& \text { We assume that the } \\
& \begin{array}{l}
y^{\prime}(t) \\
x^{\prime}(t)
\end{array} \\
& \text { denominator is not }
\end{aligned}
$$

Find the equation of the line tangent to $x=t^{2}, y=t^{3}$ at $(1,1) . \quad$, vies you (l, l).

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{3 t^{2}}{2 t}=\left.\frac{3}{2} t \Rightarrow \frac{d y}{d x}\right|_{t=1}=\frac{3}{2}=m_{\operatorname{ma}}
$$

$$
\therefore(y-1)=\frac{3}{2}(x-1) \Rightarrow y=\frac{3}{2} x-\frac{1}{2}
$$

Check: Convert to Cartesian coordinates, find $\mathrm{dy} / \mathrm{dx}$

$$
x^{1 / 2}=y^{1 / 3} \Rightarrow x^{3}=y^{2} \Rightarrow 3 x^{2}=2 y \frac{d y}{d x}
$$

$$
\begin{aligned}
& 3 x^{2}=2 y \frac{d y}{d x} \\
& \frac{3 x^{2}}{2 y}=\frac{d y}{d x} \\
& \left.\frac{d y}{d x}\right|_{(1,1)}=\frac{3(1)^{2}}{2(1)}=\frac{3}{2}
\end{aligned}
$$

To find the second derivative of a parametric curve, we find the derivative of the first derivative:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

1. Find the first derivative $(d y / d x)$.
2. Find the derivative of $d y / d x$ with respect to t. NumERRTOR
3. Divide by $d x / d t$. Denominatior

Find the second derivative for $x=t^{2}, y=t^{3}$ at $(1,1) t=1$

Use the parametric equations to the right to answer the following questions.

$$
\begin{aligned}
& x=t-t^{2} \\
& y=t-t^{3}
\end{aligned}
$$

1. Find the equation of the tangent line when $t=2$.

$$
\left.\begin{array}{l}
\text { POINT : }(x(2), y(2))=(-2,-6) \\
\text { SLOPE: }\left.\frac{d y}{d x}\right|_{t=2}=\left.\frac{y^{\prime}(t)}{x^{\prime}(t)}\right|_{t=2}=\left.\frac{1-3 t^{2}}{1-2 t}\right|_{t=2}=\frac{-11}{-3}
\end{array}\right\}
$$

$$
y+6=\frac{11}{3}(x+2)
$$

2. Find the second derivative and determine the concavity of the curve when $t=2$.

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=\left.\frac{\frac{(1-2 t)(-6 t)-\left(1-3 t^{2}\right)(-2)}{(1-2 t)^{2 \times 3}}}{(1-2 t)} \Rightarrow \frac{d^{2} y}{d x^{2}}\right|_{t=2}=\frac{(1-4)(-12)-(-11)(-2)}{(1-4)^{3}}=\frac{14}{-27}<0 \\
\therefore \text { CURVE IS CONCHS INN AT } t=2 .
\end{gathered}
$$

Use the parametric equations to the right to answer the following questions.

$$
\begin{aligned}
& x=t-t^{2} \\
& y=t-t^{3}
\end{aligned}
$$

3. Find all value of t for which the graph has horizontal and vertical tangents.
HORIZONTAL

$$
\begin{aligned}
& l: \frac{d y}{d x}=0 \Rightarrow y^{\prime}(t)=0 \\
& \quad\left(x^{\prime}(t) \neq 0\right) \\
& -3 t^{2}=0 \\
& 3 t^{2}=1 \\
& t^{2}=1 / 3 \\
& t= \pm \sqrt{1 / 3}
\end{aligned}
$$

vertack aments:

$$
\left(x^{\prime}(t) \neq 0\right)
$$

$$
\begin{aligned}
: \frac{d y}{d x} \operatorname{is~und} & \Rightarrow x^{\prime}(t)=0 \\
& \left(y^{\prime}(t) \neq 0\right)
\end{aligned}
$$

$$
y^{\prime}=1-3 t^{2}=0
$$

$$
\begin{array}{r}
x^{\prime}=1-2 t=0 \\
t=1 / 2
\end{array}
$$

Use the parametric equations to the right to answer the following questions.
3. Find all value of t for which the graph has horizontal and vertical tangents.

$$
\begin{aligned}
& x=t-t^{2} \\
& y=t-t^{3}
\end{aligned}
$$

A prolate cycloid is given by the given parametric equations. The graph crosses itself at $(0,2)$. Find the equations of both tangent lines at this point. $>y$ - intercept!

$$
\begin{aligned}
& x=2 t-\pi \sin t=0 \\
& y=2-\pi \cos t=2
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{(t)}}=\frac{\pi \sin t}{2-\pi \cos t} \\
\left.\frac{d y}{d x}\right|_{t=\pi / 2}=\frac{\pi \sin \pi / 2}{2-\pi \cos ^{\pi / 2}}=\frac{\pi}{2} \\
\left.\frac{d y}{d x}\right|_{t=-\pi / 2}=\frac{\pi \sin ^{-\pi / 2}}{2-\pi \cos ^{-\pi / 2}}=\frac{-\pi}{2}
\end{array}\right\} y= \pm \frac{\pi}{2} x+2
$$

$$
2-\pi \cos t=2
$$

$$
-\pi \cos t=0
$$

$$
\cos t=0
$$

$$
t=\pi / 2,-\pi / 2,{ }^{-\pi / 2}
$$

A prolate cycloid is given by the given parametric equations. The graph crosses itself at $(0,2)$. Find the equations of both

$$
\begin{aligned}
& x=2 t-\pi \sin t \\
& y=2-\pi \cos t
\end{aligned}
$$ tangent lines at this point.

Practice:

p. 518 \# 4, 6

Homework:
p. 147 \# 41-49 odd p. 518 \# 1 - 9 odd

